
International Journal of Computer Science and Informatics International Journal of Computer Science and Informatics

Volume 4 Issue 1 Article 8

July 2014

GENERATION OF TEST CASES USING ACTIVITY DIAGRAM GENERATION OF TEST CASES USING ACTIVITY DIAGRAM

RANJITA KUMARI SWAIN
Rourkela Institute of Mgt. Studies, Rourkela, ranjita762001@yahoo.com

VIKAS PANTHI
Dept. of Comp. Sc. and Engg., National Institute of Technology, Rourkela, vpanthi@gmail.com

PRAFULLA KUMAR BEHERA
Dept. of Comp. Sc., Utkal University, Bhubaneswar, pbehera@hotmail.com

Follow this and additional works at: https://www.interscience.in/ijcsi

 Part of the Computer Engineering Commons, Information Security Commons, and the Systems and

Communications Commons

Recommended Citation Recommended Citation
SWAIN, RANJITA KUMARI; PANTHI, VIKAS; and BEHERA, PRAFULLA KUMAR (2014) "GENERATION OF
TEST CASES USING ACTIVITY DIAGRAM," International Journal of Computer Science and Informatics:
Vol. 4 : Iss. 1 , Article 8.
DOI: 10.47893/IJCSI.2014.1171
Available at: https://www.interscience.in/ijcsi/vol4/iss1/8

This Article is brought to you for free and open access by the Interscience Journals at Interscience Research
Network. It has been accepted for inclusion in International Journal of Computer Science and Informatics by an
authorized editor of Interscience Research Network. For more information, please contact
sritampatnaik@gmail.com.

https://www.interscience.in/ijcsi
https://www.interscience.in/ijcsi/vol4
https://www.interscience.in/ijcsi/vol4/iss1
https://www.interscience.in/ijcsi/vol4/iss1/8
https://www.interscience.in/ijcsi?utm_source=www.interscience.in%2Fijcsi%2Fvol4%2Fiss1%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=www.interscience.in%2Fijcsi%2Fvol4%2Fiss1%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=www.interscience.in%2Fijcsi%2Fvol4%2Fiss1%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=www.interscience.in%2Fijcsi%2Fvol4%2Fiss1%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=www.interscience.in%2Fijcsi%2Fvol4%2Fiss1%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.interscience.in/ijcsi/vol4/iss1/8?utm_source=www.interscience.in%2Fijcsi%2Fvol4%2Fiss1%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:sritampatnaik@gmail.com

International Journal of Computer Science and Informatics, ISSN (PRINT): 2231 –5292, Volume‐3, Issue‐2, 2013

1

GENERATION OF TEST CASES USING ACTIVITY DIAGRAM

RANJITA KUMARI SWAIN1, VIKAS PANTHI2, PRAFULLA KUMAR BEHERA3

1Rourkela Institute of Mgt. Studies, Rourkela
2Dept. of Comp. Sc. and Engg., National Institute of Technology, Rourkela

3Dept. of Comp. Sc., Utkal University, Bhubaneswar
E-mail: ranjita762001@yahoo.com, vpanthi@gmail.com, p behera@hotmail.com

Abstract- As Unified Modeling Language (UML) activity diagrams capture the key system behavior, the UML activity
diagram is well suited for the system level testing of systems. In this paper, first an activity flow graph is derived from
activity diagram. Then, all the required information is extracted from the activity flow graph (AFG). The activity flow graph
(AFG) for the activity diagram is created by traversing the activity diagram from beginning to end, showing choices,
conditions, concurrent executions, loop statements. From the graph different control flow sequence are identified by
traversing the AFG by depth first traversal technique. Next, an algorithm is proposed to generate all activity paths. Finally,
test cases are generated using activity path coverage criteria. Here, a case study on Soft drink Vending Machine (SVM) has
been presented to illustrate our approach.

Keywords- Test generation technique, Test sequence gener-ation, Activity diagram, Test Case Generation, Test Coverage,
Activity flow graph.

I. INTRODUCTION

The complexity of system testing can possibly be
attributed to the fact that it involves testing a fully
integrated system that may be large and complex. Not
surprisingly, system testing of typical systems often
overwhelms manual test design efforts. Therefore,
with continually increasing system sizes, the issue of
automatic design of system test cases is assuming
prime importance [35]. A properly generated test suite
may not only locate the errors in a software system,
but also help in reducing the high cost associated with
software testing [24]. Unified Modeling Language
(UML) is a de-facto standard for modeling analysis
and design artifacts. Using UML, software designers
can capture different views of a system. The different
views that can be modeled using UML are: user,
structural, behavioral, implementation and
environmental views. An activity diagram is used to
depict all possible flows of executions in a use case.
Possibly, UML activity diagram is the only design
artifact which is good at describing the flow of control
in an object-oriented system. Due to this reason,
among several UML diagrams activity diagrams are
treated as one of the most important design artifact.

UML activity diagram [9] describes the sequential
or concurrent control flow between activities. Activity
diagram can be used to model the dynamic aspects of
a group of objects, or the control flow of an operation.
UML activity diagram is a semi-formal specification
of the system. As UML activity diagram captures the
key system behavior, so it is well suited for the system
level testing of systems [11]. What these modelling
elements in the activity diagram represent are different
aspects of system information, which are essential
information of the system and must be preserved from
design to implementation of the SUT(System Under
Test) [21]. UML becomes more and more pervasively

applied in the industry, but there are relatively few
practical approaches and tools that support deriving
test cases from models in analysis and design phases.
Adequate system testing of such software requires
satisfactory coverage of system states and transitions.
Activity diagram is an important diagram among 13
diagrams supported by UML 2.0 [30]. It is used for
business modeling, control and object flow modeling.
complex operation modeling etc. Main advantage of
this model is its simplicity and ease of understanding
the flow of logic of the system. However, finding test
information from activity diagram is a formidable
task. Reasons are attributed as follows: (a) activity
diagram presents concepts at a higher abstraction level
compared to other diagrams like sequence diagrams,
class diagrams and hence, activity diagram contains
less information compared to others, (b) presence of
loop and concurrent activities in the activity diagram
results in path explosion, and practically, it is not
feasible to consider all execution paths for testing.
Testing activities consist of designing test cases that
are sequences of inputs, executing the program with
test cases, and examining the results produced by this
execution. Testing can be carried out earlier in the
development process so that the developer will be able
to find the inconsistencies and ambiguities in the
specification and hence will be able to improve the
specification before the progam is written [18]. Even
though UML models are intended to help reduce the
complexity of a problem, with the increase in product
sizes and complexities, UML models themselves
become large and complex involving thousands of
interactions across hundreds of objects [23]. The
important part of quality control in the software life-
cycle is testing. As the complexity and size of
software increase, the time and effort required to do
sufficient testing grow. Manual testing is time-
consuming and error- prone. So, there is a pressing
need to automate the testing process. The testing

International Journal of Computer Science and Informatics, ISSN (PRINT): 2231 –5292, Volume-4, Issue-1
35

 Generation of Test Cases using Activity Diagram

International Journal of Computer Science and Informatics, ISSN (PRINT): 2231 –5292, Volume‐3, Issue‐2, 2013

2

process can be divided into three parts: test case
generation, test execution, and test evaluation. The
latter two parts are relatively easy to automate
provided that the criteria for passing the tests are
available. However, to determine which tests are
required to achieve a certain level of confidence is not
trivial [25]. To generate test data form high level
design notations has several advantages over code-
based test case design [3]. Testing based on design
models has the advantage that the test cases remain
valid even when the code changes a little bit. Design
models can be used as the basis for test case
generation, which significantly reduces the costs of
testing [34].

The process of generating test cases from design will
help to discover problems early in the development
process and thus it saves time and resources during
development of the system. However, selection of test
cases from UML models is one of the most
challenging tasks [28]. In UML, the behavior of a use
case can be represented by using interaction, activity
and state machine diagrams. Sequence diagrams
capture the exchange of messages between objects
during execution of a use case. It focuses on the order
in which the messages are sent. Activity diagrams, on
the other hand, focus upon control flow as well as the
activity-based relationships among objects. These are
very useful for visualizing the way several objects
collaborate to get a job done.

These are very useful for describing the procedural
flow of control through many objects. Model-based
testing [10] has grown in importance. Models are
specified to represent the relevant, desirable features
of the system under consideration (SUC). These
models are used as a basis for (automatically)
generating test cases to be applied to the SUC. Typical
models that are used for representing system behavior
are unified modeling language, finite state machines,
statecharts etc.[5]. With this motivation, we aim our
work at deriving test sequence from activity diagram
and maximizing state or node coverage. Also our
method minimizes the size of test, time and cost,
while preserving test coverage. In this work, we
propose an approach for generating test cases using
UML 2.0 activity diagrams. In our approach, we
consider a coverage criterion called activity path
coverage criterion. Generated test suite following
activity path coverage criterion aims to cover more
faults like synchronization faults, faults in a loop etc.
than the existing work.

The rest of the paper is organized as follows. A brief
discussion on basic definitions and concepts used in
our methodology is given in Section II. Section III
presents our proposed approach for test case
generation. Section IV presents a case study to
demonstrate the use of our methodology with the
SVM (Softdrink Vending Machine) example. In
Sectin V, the related work are described and compared
them with the proposed approach. Finally, Section VI
presents the conclusion and future work of this paper.

II. BASIC CONCEPTS AND DEFINITIONS

Here, in this section, we introduce a few definitions
and notations that are refered to in our discussions.
This section briefly describes UML activity diagrams.
First, we formally define several aspects of activity
diagrams which will be used in the test generation.
Next, we define the coverage criteria of the UML
activity diagrams. Activity diagram can be used to
model the dynamic behavior of a group of objects.
Activity diagrams emphasize the activities of the
object or a group of objects, so it is the perfect one to
describe the realization of the operation in the design
phase and to describe the sequence of the activities
among the involving objects in the control flow during
the implementation of an operation. It also describes
the relationship between the activity and the object in
the message flow, the state change of object in the
object flow at the time of execution of activity [25].
Use cases are often supplemented with activity
diagrams if the control structure of the use case
includes loops or branches. The use of activity
diagrams allows defining a coverage criterion to
ensure a particular degree of completeness of the test
scenarios. This diagram is able to reflect all possible
scenarios for one use case as shown in Fig. 5.

A. UML activity diagram modelling
Here, in this section, we discuss some of the
fundamentals about activity diagram. An activity
diagram is similar to traditional flowcharts, which

allows us to model a process as an activity as a
collection of nodes connected by edges.

can be attached to any modeling element for the
purpose of modeling its behavior, including Use cases,
Classes, Interfaces, Collaborations.

It is a kind of directed graph. Tokens which indicate
control or data values flow along the edges from the
source node to the sink nodes driven by the actions
and conditions. An activity diagram has two kinds of
modeling elements: Activity nodes and Activity
edges.

Activity nodes
More specially, there are three kinds of nodes in
activity diagrams:

– Action nodes (AN): Action nodes consume all
input data/control tokens when they are ready,
generate new tokens and send them to output activity
edges.

– Control nodes (CN): Control nodes route tokens
through the graph. The control nodes include
constructs to choose between alternative flows
(decision/ merge), to split or merge the flow for
concurrent processing (fork / join)

– Object nodes (ON): Object nodes provide and

accept data tokens, and may act as buffers, collecting
data tokens as they wait to move downstream.

Activity edges
– Control flow edge: It represents flow of control

through the activity

International Journal of Computer Science and Informatics, ISSN (PRINT): 2231 –5292, Volume-4, Issue-1

36

 Generation of Test Cases using Activity Diagram

International Journal of Computer Science and Informatics, ISSN (PRINT): 2231 –5292, Volume‐3, Issue‐2, 2013

3

– Object flow edge: It represents the flow of
objects through the activity

In our paper, we mainly consider the control and
data flow of activity diagrams that are relevant to test
generation. From the definition of a UML activity
diagram, it may be noted that the various types of
activity nodes occurring in an activity diagram include
action nodes, object nodes and control nodes [1].
Among these, action nodes specify the behavior that
needs to be executed. An action begins execution by
taking data from its incoming edges. An action node
can have multiple incoming and multiple outgoing
edges. When the execution of an action is complete,
data is made available to all its successor nodes.
Object nodes specify the values passing through
activity diagram. Object nodes are denoted by
rounded rectangle symbols with the name of the node
written inside.

International Journal of Computer Science and Informatics, ISSN (PRINT): 2231 –5292, Volume-4, Issue-1

37

 Generation of Test Cases using Activity Diagram

International Journal of Computer Science and Informatics, ISSN (PRINT): 2231 –5292, Volume‐3, Issue‐2, 2013

4

Fig. 1. activity diagram with loop structure

Fig. 2. activity diagram with concurrent activities

C. Fault model
In this sub section, we present our fault model. Every
test strategy targets to detect certain categories of
faults called its fault model [7]. Our test case
generation scheme is based on the following fault
model:
• Fault in decision: This fault occurs in a decision

of an activity diagram.
• Fault in loop: This fault occurs in either loop

entry condition or loop terminating condition or
increment operation or decrement operation.

III. OUR APPROACH TO GENERATE TEST
CASES

In this section, we discuss our proposed approach to
generate test cases from an activity diagram. We have
named our appoach, Generating Test cases from
Activity Diagram (Gen-TeAc). Our approach for
generating test cases is schematically shown in Fig. 3.
The proposed test case generation approach consists
of the following steps, that are discussed below in
more detail.

Fig. 3. Schematic diagram of our testcase genearation process

International Journal of Computer Science and Informatics, ISSN (PRINT): 2231 –5292, Volume-4, Issue-1
38

 Generation of Test Cases using Activity Diagram

International Journal of Computer Science and Informatics, ISSN (PRINT): 2231 –5292, Volume‐3, Issue‐2, 2013

5

• Constructing activity diagram for the particular
usecase with necessary test information.

• Converting the activity diagram into an activity
flow graph (AFG).

• Traversing the activity flow graph to extract all
required information.

• Generating test cases from the activity graph.

We explain these steps in detail in the following
subsections.

We also illustrate each step with a running example of
Softrink Vending Machine.

A. Constructing the activity diagram with necessary
test information Here, we describe guidelines for
modeling necessary test information into an activity
diagram followed by an example. In our technique, we
employ UML models that are used to represent the
requirements of a system for developing test
scenarios. Each use case can be represented with one
or more activity diagrams. The usecase of SVM is
shown in Fig. 4.

Fig. 4. Usecase diagram of Softdrink vending machine

Activity diagrams represent the scenarios related to a
use case(example, Fig. 5). A scenario is a complete
“path” through the activity diagram. Users of the
system can traverse many paths to execute the
functionality specified in the use case. The main
scenario (basic path) is the one beginning from the
start node, traversing through all the intermediate
nodes without any error made, upto the end node.
Alternate scenarios (alternate paths) are the cases
when there is wrong entry of input or a condition is
not satisfied. In this subsection, below, we describe
guidelines for modeling necessary test information
into an activity diagram.

We replace a loop, decision block or fork-join
block in any thread originated from a fork by an
activity with higher abstraction level.

B. Converting activity diagram into activity flow
graph In this sub section, we explain about the
conversion procedure of an activity diagram into an
activity graph. We convert the activity diagram into a
graph, called activity flow graph (AFG) using the
following steps: The AFG for activity diagram is
created by traversing the activity diagram from
beginning to end, showing choices, conditons, concur-

rent executions, loop statements.

• For each conditional statement create an entry

into the Control Flow Activity Mapping Table
(CFAMT). Then traversing the CFAMT, create
nodes in the AFG.

• The loop statements are transformed into
conditional statements, listed in the CFAMT.

• For each concurrent execution statements an
entry is made into the CFAMT for each
execution path and in turn is represented by
different execution paths in AFG.

C. Traversing the AFG to extract all required
information from AFG

In this subsection we extract all necessary
information’s like nodes, edges, conditional
statements etc. from the AFG by traversing it. An
AFG may be treated as an activity transition graph,

International Journal of Computer Science and Informatics, ISSN (PRINT): 2231 –5292, Volume-4, Issue-1

39

 Generation of Test Cases using Activity Diagram

International Journal of Computer Science and Informatics, ISSN (PRINT): 2231 –5292, Volume‐3, Issue‐2, 2013

6

where each activity is considered as a node. From the
AFG different control flow sequence are identified by
traversing the AFG using depth first traversal
algorithm. During traversal, we look for conditional
predicates on each of the transition.

In this step there is a verification process to ensure that
all required information are completed, like activity
information, input, output and conditions. If all the
required information are not available, then the
process returns false. Again it allows re-design the
diagram and filling more information. Otherwise the
process will go to next step. In this process we can
derive a set of test case, test data and test sequence.

IV. CASE STUDY

In this section, we explain the working of our
approach with a case study. First, we provide an
overview of the problem and the activity diagram of
the design model. Then, we describe the process of the
test case generation from the activity diagram.

A. The problem and the model of the solution

To illustrate the test generation process, we present
here the Soft Vending machine case study. In this
machine an user can insert coins into it, ask the
machine to vend an item or to cancel the transaction
which results in the machine returning all the coins
inserted and not consumed. If an item is not available
or a users credit is insufficient, or a selection is
invalid, the machine prints an error message and
doesnt dispense the item, but instead returns any
accumulated coins. Fig. 5 shows an activity diagram
that represents application Vending Machine with
Dispenser, and their interactions. Dispenser provides
an interface that is used by Vending Machine.
Vending Machine uses the services provided by
Dispenser to manage credits inserted into the vending
machine, validate selections, and check for availability
of items. A Softdrink Vending System (SVM)
dispenses softdrinks to customers. Customers use the
front panel to specify their type and number of drinks
i.e. details of items. The machine displays the prices
for the requested item. We have mentioned 3 different
categories of drinks. Once the user selects soft drink
type in the menu, the object enters into
DisplayForCustomer state and displays pricelist ,
where the prices of different types of soft drink are
displayed. The user can select the type of soft drink
needed, as well as the number of softdrinks (N)
required. The customers then deposits cash in the bin
provided and presses ’accept cash’. The machine
checks the cash, if it is more, the balance cash is paid
out. The Softdrink Vending Machine (SVM) system
has two actors: customer and maintenance personnel.
The use cases of the system are: Purchase Beverage,
Check Inventory, Add Inventory, Add Recipe, Edit
Recipe and Delete Recipe. Each use case was
elaborated using activity diagrams. The customer can
only purchase beverage. The use cases Check
Inventory, Add Inventory, Add Recipe, Edit Recipe
and Delete Recipe are associated with the maintenace

International Journal of Computer Science and Informatics, ISSN (PRINT): 2231 –5292, Volume-4, Issue-1
40

 Generation of Test Cases using Activity Diagram

International Journal of Computer Science and Informatics, ISSN (PRINT): 2231 –5292, Volume‐3, Issue‐2, 2013

7

personnel. The Softdrink Vending Machine (SVM)
dispense softdrinks to the customers on receiving
money from them. To explain the case, we take as
example, the ‘Buy Beverage use case of the Vending
Machine. The activity diagram of ‘Buy Beverage use
case of the Vending Machine object for various events
of interest are shown in Fig. 5. As the user enters
money (a) the object changes its state to
OrderController. In the OrderController state where ,
it calculates how much balance (ReturnMoney) is to
be returned to the user if any, where ReturnMoney
=Amt-TotalMoney. If the balance is less than zero, the
SVM object changes its state from OrderController to
ChangeDispenser, as the money inserted is
insufficient. If the balance is more than or equal to
zero, the object goes to SoftDrinkDispenser state and
delivers the requested number of soft drink. If the
balance is zero, then once the soft drink is delivered
the machine changes its state from
SoftDrinkDispenser to idle. If the balance is more than
zero, it enters the ChangeDispenser state, where the
balance money is returned. Once the money is
returned, the SVM object transits to IdleMachine
state. If the balance(chng) is more than zero, the
machine object enters into the return money state,
where the change balance money is returned. Once the
money is returned, the machine object again enters
into idle state.

B. Activity Diagram for SVM and CFAMT Table
After constructing activity diagram, we construct the
Control Flow Activity mapping Table (CFAMT) as
shown in Table I. The CFAMT (Control Flow
Activity Table) is created by analyzing the activity
diagram. The corresponding AFG is created by
analyzing the CFAMT, as shown in Fig.. 6. For each
label in the CFAT a node is created in AFG. The
sequence of control flow in the CFAT is maintained in
the AFG. During the AFG construction, each activity
in the activity diagram is represented by a node in the
AFG. The timing ordering of the diagram is
maintained in the system. The conditional message in
the diagram is represented by a node followed by two
outward edges. Whether the condition is true or false
one of the edges is covered.

D. Test Case generation
In this example, there is no such subordinate activity
graph, so combination of activity paths is not required
here. There-fore, we have total five activity paths,
which we process for generating test cases. Test case
in our approach consists of four components -
sequence of branch conditions, activity sequence,
object state changes, and object created. Activity
sequence, object state changes, and object created
constitute the expected system behavior. On the other
hand, we consider the sequence of branch conditions
as a source of test input.

International Journal of Computer Science and Informatics, ISSN (PRINT): 2231 –5292, Volume-4, Issue-1

41

 Generation of Test Cases using Activity Diagram

International Journal of Computer Science and Informatics, ISSN (PRINT): 2231 –5292, Volume‐3, Issue‐2, 2013

8

Each branch condition in sequence of branch
conditions corresponds to some input data specified in
the textual description of the use case whose activity
diagram is being considered. As a part of test case
generation, we obtain necessary values of all four
components of a test case from the corresponding
activity path itself. For this, we use CFAMT
constructed for the activity graph.

V. RELATED WORK

Here, in this section, we discuss several existing
research attempts in this area. These attempts have
been reported on scenario coverage based system
testing. A lot of studies have investigated the effect of
test-set reduction on the size and fault finding
capability of a test-set. As our work is related to test
case generation using activity diagram, we survey
only to those work related to UML activity diagrams.
We present our survey in the followings: Earlier,
Wong et al. addressed the question of the effect on
fault detection of reducing the size of a test set while
holding coverage constant [36], [37]. They randomly
generated a large collection of test sets that achieved
block and all-uses data flow coverage for each subject
program. For each test set they created a minimal
subset that preserved the coverage of the original set.
Then, they compared the fault finding capability of the
reduced test-set to that of the original set. Their data
shows that test minimization keeping coverage
constant results in little or no reduction in its fault
detection effectiveness. This observation leads to the
conclusion that test cases that do not contribute to
additional coverage are likely to be ineffective in
detecting additional faults. Again, to confirm the
results in the Wong study, Rothermel et al. performed
a similar experiment using seven sets of C programs
with manually seeded faults [33]. For their experiment
they used edge-coverage [14] adequate test suites
containing redundant tests and compared the fault
finding of the reduced sets to the full test sets. In this
experiment, they found that [4] the fault-finding
capability was significantly compromised when the
test-sets were reduced and [6] there was little
correlation between test-set size and fault finding
capability. The results of the Rothermel study were
also observed by Jones and Harrold in a similar
experiment [17]. Hartmann et al. [16] proposed an
approach for generating system level tests from
activity diagrams. In their approach, activity diagrams
were manually annotated prior to the test case
generation. The annotations help to determine
different variables and possible data choices for these
variables. Test cases were then generated considering
all paths in the annotated diagram. They made use of
category partition method for generating test data
corresponding to a test case. They also discussed test
case execution for which test cases were converted
into executable test scripts or test procedures. Offutt
and Abdurazik [28], [29] proposed a technique for
generating test cases from UML state diagrams. They
have highlighted several useful test coverage criteria
for UML state charts such as: (1) full predicate

coverage, (2) transition coverage etc. Linzhang et al.
[25] suggested an approach for generating test cases
from activity diagrams and present UMLTGF, a
prototype tool for supporting automation in test case
generation. While traversing activity diagrams, they
restricted that the loops be executed at most once and
consider basic path coverage criterion for generating
test cases. The approach relies on the assumption that
any fork node can only have two outgoing edges and
they generate two scenarios from such a fork
structure. Kansomkeat and Rivepiboon [18] discussed
a method for generating test sequences using UML
state chart diagrams. They transformed the state chart
diagram into a flattened structure of states called
testing flow graph (TFG). From the TFG, they listed
possible event sequences which they considered as
test sequences. The testing criterion they used to guide
the generation of test sequences was the coverage of
the states and transitions of TFG. Kim et al. [19]
proposed a method for generating test cases for class
testing using UML state chart diagrams. They
transformed state charts to extended FSMs (EFSMs)
to derive test cases. In the resulting EFSMs, the
hierarchical and concurrent structure of states were
flattened and broadcast communications are
eliminated. Then data flow is identified by
transforming the EFSMs into flow graphs, to which
conventional data flow analysis techniques were
applied. Mingsong et al. [27] proposed an approach
for generating test cases from activity diagrams. The
approach made use of basic paths for handling loops.
Based on a partial order relation that sequences the
activities of an activity diagram, they define a simple
path which selects a representative path for handling
concurrency. These simple paths were then matched
with the execution trace of the corresponding program
by mapping functions to activities. In this way, they
found out coverage of simple paths in an activity
diagram.

In the experiment discussed in this paper, we attempt
to highlight some additional issue. Our work is
different in some respects. The test cases which are
generated according to our approach, not only detect
the synchronization faults but also identify possible
location of the faults, which eventually reduces faults
correction time and testing effort. We achive almost
100% activity path coverage, basic path, transition and
action coverage.

VI. CONCLUSION AND FUTURE WORK

In this paper, first we derived activity transition graph
(AFG), from activity diagram. All required
information were extracted from the graph. Next, the
graph was traversed to select the predicates. Then, test
cases were generated usng activity path coverage
criteria. Here, we first enumerated all possible paths
from the start node to a final node in the AFG of
activity diagram. Each path was then visited to
generate test cases. During visit, we looked for
conditional predicates on each of the transitions for
execution of corresponding flow and activity. For each

International Journal of Computer Science and Informatics, ISSN (PRINT): 2231 –5292, Volume-4, Issue-1
42

 Generation of Test Cases using Activity Diagram

International Journal of Computer Science and Informatics, ISSN (PRINT): 2231 –5292, Volume‐3, Issue‐2, 2013

9

conditional predicate, based on the activity path
coverage criteria and the guard condition, we
generated test cases. In this way, this paper introduced
an efficient test generation technique to optimize test
coverage by minimizing time and cost.

In our opinion, there is an unacceptable loss in terms
of test-suite quality. Thus, we advocate research into
testcase prioritization techniques and experimental
studies to determine if such techniques can more
reliably lessen the burden of the testing effort by
running a subset of an ordered test-suite as opposed to
a reduced testsuite, without loss in fault finding
capability. Further research is planned to extend the
model for considering time constraints to handle more
complicated applications. It might be more useful to
include sequence diagrams illustrating each activity in
a use case so that detailed test oracles can be derived
to refine scenario generation phase further.

REFERENCES

[1] UML: UML 2.0 superstructure-final adopted specification.
Object Management Group. http://www.omg.org/docs/ad/03-
08-02.pdf, (2003).

[2] OMG. unified modeling language specification, version 2.0,
object management group, www.omg.org, August 2005.

[3] A. Abdurazik and J. Offutt. Using UML collaboration
diagrams for static checking and test generation. In In 3rd
International Conference on the UML, pages 383 – 395,
2000.

[4] M. Archer, C. Heitmeyer, and S. Sims. TAME: A PVS
interface to simplify proofs for automata models, In User
Interfaces for Theorem Provers, 1998.

[5] F. Belli and A. Hollmann. Test generation and minimization
with basic statecharts. ACM, SAC-08, pages 718 – 723,
March 2008.

[6] S. Bensalem, P. Caspi, C. Parent-Vigouroux, and C. Dumas.
A methodology for proving control systems with lustre and
pvs. In In Proceedings of the Seventh Working Conference
on Dependable Computing for Critical Applications (DCCA
7), 1999.

[7] R. V. Binder. Testing Object-Oriented Systems Models,
Patterns, and Tools. Addison Wesley, October 1999.
Reading, Massachusetts.

[8] M. R. Blaha and J. R. Rumbaugh. Object-Oriented Modeling
and Design with UML. Pearson, second edition.

[9] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified
Modeling Language User Guide. Addison-Wesley, 2001.

[10] M. Broy. Model-based testing of reactive systems. Advanced
Lectures, Springer., June 2005.

[11] M. Chen, P. Mishra, and D. Kalita. Coverage-driven
automatic test generation for uml activity diagrams. In In
Proceedings of the 18th ACM Great Lakes symposium on
VLSI, pages 139 – 142, 2006.

[12] T. S. Chow. Testing software design modeled by finite-state
machines. IEEE TSE, 4(3):178 – 187, 1978.

[13] B. P. Douglass. Real Time UML: Advances in The UML for
Real-Time Systems. Addison Wesley, third edition,
February. 2004.

[14] P. Frankl and S. N. Weiss. An experimental comparison of
the effectiveness of the all-uses and all-edges adequacy

criteria. In Proceedings of the symposium on Testing,
analysis, and verification, 1991.

[15] D. Harel. Statecharts: A visual formulation for complex
systems. Sci. Comp. Prog., 8:231 – 274, 1987.

[16] J. Hartmann, M. Viera, H. Foster, and A. Ruder. A uml based
approach to system testing. Journal, Innovations in Systems
and Software Engineering, pages 12–24, 2005. Springer,
London.

[17] J. A. Jones and M. J. Harrold. Test-suite reduction and
prioritization for modified condition/decision coverage. IEEE
Transactions on Software Emgineering, 29(3):195 – 209,
March 2003.

[18] S. Kansomkeat and W. Rivepiboon. Automated-generating
test case using UML statechart diagrams. In Proc. SAICSIT
2003,ACM, pages 296 – 300, 2003.

[19] Y. G. Kim, H. S. Hong, D. H. Bae, and S. D. Cha et al. Test
cases generation from UML state diagram, Software Testing
Verification and Reliability, 187 – 192, 1999.

[20] N. Kosindrecha and J. Daengdej. A test generation method
based on state diagram. journal of Theoritical and Applied
Information Technology, pages 28 – 44, 2005 – 2010.

[21] P. Kruchten. The Rational Unified Process -An Introduction.
Addison-Wesley, 2nd edition, 2000. Reading, MA.

[22] R. Lai. A survey of communication protocol testing. Journal
of Systems and Software, 62(1):21 – 46, 2002.

[23] J. T. Lallchandani and R. Mall. Integrated state-based
dynamic slicing technique for UML models. In IET
Software, Vol. 4, Issue 1, pages 55 – 78, 2010.

[24] H. Li and L. C. Peng. Software test data generation using ant
colony optimization. In Proceedings of World Academy of
Science, Engineeing and Technology, January 2005.

[25] W. Linzhang, Y. Jiesong, Y. Xiaofeng, H. Ju, L. Xuandong,
and Z. Guoliang. Generating test cases from UML activity
diagram based on gray-box method. Proceedings of the 11th
Asia-Pacific Software Engineering Conference (APSEC04),
pages 284 – 291, 2004.

[26] R. Mall. Fundamentals of Software Engineering. Prentice
Hall, 3rd edition, 2009.

[27] C. Mingsong, Q. Xiaokang, and L. Xuandong. Automatic
test case generation for uml activity diagrams. In In
Proceedings of the 2006 International workshop on
Automation of software test, pages 2 – 8. Shanghai, China,
2006.

[28] J. Offutt and A. Abdurazik. Generating tests from UML
specifications. In Proceedings of 2nd International
Conference. UML, Lecture Notes in Computer Science,
pages 416 – 429, 1999.

[29] J. Offutt, S. Liu, A. Abdurazik, and P. Ammann et al.
Generating test data from state-based specifications.
Software Testing Verification Reliability., 13:25 – 53, 2003.

[30] D. Pilone and N. Pitman. UML 2.0 in a Nutshell. NY.
O’Reilly, USA, June 2005.

[31] M. Priestley. Practical Object-Oriented Design with UML.
Tata McGraw-Hill, second edition.

[32] G. Reinelt. In the traveling salesman: Computational
solutions for tsp applications. Springer Berlin / Heidelberg,
840, 1994.

[33] G. Rothermel, M. Harrold, J. Ostrin, and C. Hong. An
empirical study of the effects of minimization on the fault
detection capabilities of test suites. In Proceedings of the
International Conference on Software Maintenance, pages 34
– 43, November 1998.

International Journal of Computer Science and Informatics, ISSN (PRINT): 2231 –5292, Volume-4, Issue-1
43

 Generation of Test Cases using Activity Diagram

International Journal of Computer Science and Informatics, ISSN (PRINT): 2231 –5292, Volume‐3, Issue‐2, 2013

10

[34] P. Samuel and R. Mall. Boundary value testing based on
UML models. In In Proceedings of the 14th Asian Test
Symposium (ATS), 2005.

[35] M. Sharma and R. Mall. Automatic generation of test
specifications for coverage of system state transitions.
Information and Software Technology, (51):418 – 432, 2009.

[36] W. Wong, J. Horgan, S. London, and A. Mathur. Effect of
test set minimization on fault detection effectiveness.

Software Practice and Experience, 28(4):347 – 369, April
1998.

[37] W. Wong, J. Horgan, A. Mathur, and A. Pasquini. Test set
size minimization and fault detection effectiveness: A case
study in a space application. In Proceedings of the 21st
Annual International Computer Software and Applications
Conference, pages 522 – 528, August 1997.

International Journal of Computer Science and Informatics, ISSN (PRINT): 2231 –5292, Volume-4, Issue-1

44

	GENERATION OF TEST CASES USING ACTIVITY DIAGRAM
	Recommended Citation

	GENERATION OF TEST CASES USING ACTIVITY DIAGRAM

