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Abstract- Linear Discriminant Analysis (LDA) has been successfully applied to face recognition which is based on a linear 
projection from the image space to a low dimensional space by maximizing the between class scatter and minimizing the 
within-class scatter. LDA allows objective evaluation of the significance of visual information in different features of the 
face for identifying the human face. The LDA also provides us with a small set of features that carry the most relevant 
information for classification purposes. LDA method overcomes the limitation of Principle Component Analysis method by 
applying the linear discriminant criterion. This criterion tries to maximize the ratio of determinant of the between-class 
scatter matrix of the projected samples to the determinant of the within-class scatter matrix of the projected samples. Linear 
discriminant groups the images of the same class and separate images of different classes. Here to identify an input test 
image, the projected test image is compared to each projected training, and the test image is identified as the closest training 
image. The experiments in this paper we present to use LDA for face recognition. The experiments in this paper are 
performed with the ORL face database. The experimental results show that the correct recognition rate of this method is 
higher than that of previous techniques.   
 
Keywords- Face recognition, Linear Discriminant Analysis, Class separation using LDA, Algorithm used in LDA approach, 
Experimental result. 
 

 
I. INTRODUCTION 
 
Face recognition system is a computer application for 
automatically identify or verifying a person from a 
digital image or video frame from a video source. 
Facial recognition system typically used in security 
system. In this system automatically searching of 
faces from the face databases, typically resulting in a 
group of facial images ranked by computer evaluated 
similarity. Some facial recognition algorithm 
identifies faces by extracting landmarks, or features 
from an image of the subject face. For example, face 
recognition algorithm may analyze the relative 
position, size, shape of the eyes, nose cheekbones and 
jaw to recognize faces. 
 
Linear Discriminant analysis explicitly attempts to 
model the difference between the classes of data. 
LDA is a powerful face recognition technique that 
overcomes the limitation of Principle component 
analysis technique by applying the linear discriminant 
criterion. This criterion tries to maximize the ratio of 
the determinant of the between-class scatter matrix of 
the projected samples to the determinant of the with-
in class scatter matrix of the projected samples. 
Linear discriminant group images of the same class 
and separates images of different classes of the 
images.  
 
Discriminant analysis can be used only for 
classification not for regression. The target variable 
may have two or more categories. Images are 
projected from two dimensional spaces to c 
dimensional space, where c is the number of classes 
of the images. To identify an input test image, the 
projected test image is compared to each projected 

training image, and the test image is identified as the 
closest training image. The LDA method tries to find 
the subspace that discriminates different face classes. 
The within-class scatter matrix is also called intra-
personal means variation in appearance of the same 
individual due to different lighting and face 
expression. The between-class scatter matrix also 
called the extra personal represents variation in 
appearance due to difference in identity. Linear 
discriminant methods group images of the same 
classes and separates images of the different classes. 
To identify an input test image, the projected test 
image is compared to each projected training image, 
and the test image is identified as the closest training 
image.            
 
To explain discriminant analysis, here we consider a 
classification involving two target categories and two 
predictor variables.  
 
The following figure shows a plot of the two 
categories with the two predictor’s orthogonal axes:   

 

Figure 1. Plot of two categories 
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Face Recognition by Linear Discriminant Analysis 

Linear discriminant analysis finds a linear 
transformation (discriminant function) of the two 
predictors, X and Y that yields a new set of 
transformed values that provides a more accurate 
discrimination than either predictor alone: 

Transformed Target = C1*X + C2*Y 
 
The following figure shows the partitioning done 
using the transformation function: 
 

 
Figure 2. Partitioning done using the transformation function 

 
Maximizing the between class scatter matrix, while 
minimizing the within-class scatter matrix, a  
transformation function is found that maximizes the 
ratio of between-class variance to within-class 
variance and find a good class separation as 
illustrated as follows: 

 

 
Figure 3. Class Separations in LDA 

 
II. ALGORITHM USED IN LDA 

 
In Linear discriminant analysis we provide the 
following steps to discriminant the input images: 

 
Step-1 
We need a training set composed of a relatively large 
group of subjects with diverse facial characteristics. 
The appropriate selection of the training set directly 
determines the validity of the final results. The 
database should contain several examples of face 
images for each subject in the training set and at least 
one example in the test set. These examples should 
represent different frontal views of subjects with 
minor variations in view angle. They should also 
include different facial expressions, different lighting 

and background conditions, and examples with and 
without glasses. It is assumed that all images are 
already normalized to m × n arrays and that they 
contain only the face regions and not much of the 
subjects’ bodies. 

 
Step-2 
For each image and sub image, starting with the two 
dimensional m × n array of intensity values I(x, y), 
we construct the vector expansion Φ� R m× n. This 
vector corresponds to the initial representation of the 
face. Thus the set of all faces in the feature space is 
treated as a high-dimensional vector space. 

 
Step-3 
By defining all instances of the same person’s face as 
being in one class and the faces of different subjects 
as being in different classes for all subjects in the 
training set, we establish a framework for performing 
a cluster separation analysis in the feature space. 
Also, having labeled all instances in the training set 
and having defined all the classes, we compute the 
within-class and between-class scatter matrices. 
 
Now with-in class scatter matrix ‘Sw’ and the 
between class scatter matrix ‘Sb’ are defined as 
follows: 

  
Sw =∑ C ∑N j  ( Гi j -  µj )( Гij  -  µj)T  ------ (1) 
              j=1    i=1 

 
Where , Гi j , the ith samples of class j, µj  is the mean 
of class j, c is the number of classes, Nj is the 
number of samples in class j. 

 
Sb =∑ C  (µj - µ) (µj - µ)T   --------------------  (2) 
       j=1 
 
Where, µ represents the mean of all classes.  

  
T

T

W S b WW a r g m a x m o d
W S w W

⎡ ⎤
= = ⎢ ⎥

⎣ ⎦

Then the subspace for LDA is spanned by a set of 
vectors W=[W1 , W2, ….., Wd] , Satisfying 
 
   

T

T

W S b WW a rg m a x m o d
W S w W
⎡ ⎤

= = ⎢ ⎥
⎣ ⎦

   - -- -- (3) 

 
The with class scatter matrix represents how face 
images are distributed closely with-in classes and 
between class scatter matrix describes how classes 
are separated from each other. When face images are 
projected into the discriminant vector W. 
 
Face images should be distributed closely with-in 
classes and should be separated between classes, as 
much as possible. In other words, these discriminant 
vectors minimize the denominator and maximize the 
numerator in equation (3). W can therefore be 
constructed by the eigen vectors of Sw-1 Sb. PCA tries 
to generalize the input data to extract the features and 
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Face Recognition by Linear Discriminant Analysis 

Number 
of Test 

Correctly 
recognized 

Wrongly 
recognized 

Accuracy 
(%) 

40 37 3 92.5 

Table 3. Performance of LDA 
VI. CONCLUSION 
 
Linear Discriminant Analysis method has been 
successfully applied to face recognition which is 
based on a linear projection from the image space to a 
low dimensional space. But the major drawback of 
applying LDA is that it may encounter the small 
sample size problem. When the small sample size 
problem occurs, the within-class scatter matrix 
becomes singular. Since the within-class scatter of all 
the samples is zero in the null space of Sw, the 
projection vector that can satisfy the objective of an 
LDA process is the one that can maximize the 
between-class scatter. 
 
But face image data distribution in practice is highly 
complex because of illumination, facial expression 
and pose variation. The kernel technique is used to 
project the input data into an implicit space called 
feature space by nonlinear kernel mapping. Therefore 
kernel trick is used taking input space and after that 
LDA performed in this feature space, thus a non 
linear discriminant can be yielded in the input data. 
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