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DISCRETE TIME MODEL PREDICTIVE CONTROL APPROACH FOR 
INVERTED PENDULUM SYSTEM WITH INPUT CONSTRAINTS 

 
HARSHITA JOSHI1, NIMMY PAULOSE2 

 
1,2Electrical Engineering Department, MNNIT, Allahabad,India. 

 
 
Abstract- Model predictive control (MPC) includes a receding-horizon control techniques based on the  process model for 
predictions of the plant output. Since late 1970’s several MPC  approaches have been reported in the literature. Selection of 
the most appropriate MPC approach depend on the specific problem. In this paper, discrete time MPC is applied to a inverted 
pendulum system coupled to a cart. The objective of the MPC-controller is to drive the system towards pre-calculated 
trajectories that move the system from one reference point to another.Quadratic programming is used for optimization of 
objective function (with and without constraints). 
 
Keywords- inverted pendulum; model predictive control; quadratic programming; unconstrained and constrained 
optimization. 
 

 
I. INTRODUCTION 
 
Inverted Pendulum is a very good platform for 
control engineers to verify and apply different logics 
in the field of control theory. This system is 
inherently unstable and nonlinear. In the past 
decades, lots of researches have done with the 
inverted pendulum equilibrium control and lots of 
control methods have been tested. Some of them are: 
linear quadratic regulator and sliding mode control 
[1], proportional-integral-derivative (PID) control and 
fuzzy control [2], neural networks [3], etc. For design 
and control of the inverted pendulum system a 
mathematical model must first be obtained. From 
this, the control system can be designed and 
simulated to obtain optimum control. As keeping the 
pendulum in the inverted position, it is also desirable 
to control the horizontal position of the cart on the 
track. The horizontal position control is required 
because there is a finite length of the track upon 
which the cart can move. Mainly, there are two 
modes of operation for apparatus: 
- keeping the pendulum inverted and only ensuring 
that the cart’s position does not move out of range. 
- applying a step input to the cart, requesting it to 
move from one position to another, whilst keeping 
the pendulum Inverted. The inverted pendulum 
system has many practical applications like in 
aircrafts, robotics etc. 
 
In this paper we consider the inverted pendulum 
coupled to a cart. The purpose of the system is to 
keep the cart on reference tracking position. This is 
achieved by  desigining a model predictive controller 
which can control the movement of the cart in 
predefined path when a appropriate force is applied. 
The MPC-controller is applied to show its 
applicability to a linearized inverted pendulum  
system. The paper is organized as follows: The single 
inverted pendulum model is presented in Section II. 
Section III describes the formulations of Discrete 

time Model Predictive Control used in this work. 
Section IV discusses formulation of constrained 
control problem which is used to solve the MPC 
optimisation problems (Hildreth quadratic 
programming). Finally, section V describes the 
simulation results and section VI the conclusions. 
 
II. INVERTED PENDULUM SYSTEM 
 
The system consists of a cart which can be moved 
horizontal with the application of a force as shown in 
Fig. 1. 
 

 
Figure 1. Inverted Pendulum on a cart structure 

  
Forces and moments acting in the system were 
analysed using Fig. 1 where  represents the angle of 
pendulum rod, M and m stands for the weight of the 
cart and pendulum respectively, l is the distance 
between centre of gravity of the pendulum and the 
centre of rotation of the pendulum and g is the gravity 
acceleration constant. Symbol F represents the force 
produced by the DC motor. It is obvious that the 
position and dynamics of the pendulum affects the 
cart. This affect is described by a force which can be 
divided into horizontal and vertical components. The 
horizontal component of the force is:  

International Journal of Electrical and Electronics Engineering(IJEEE) ISSN(PRINT):2231–5284,Vol‐3, Issue‐3
186



Discrete time Model Predictive Control Approach for Inverted Pendulum System with Input Constraints 

2

2 ( sin )H m x l
t

θ∂
= +

∂
      (1)

 
where x represents position of the cart. The vertical 
component is: 

2

2 ( cos )V m l
t

θ∂
=

∂
   (2) 

The motion equation of the cart can be written as 
follows: 

2

2

x xM F H f
t t
∂ ∂

= − −
∂ ∂

  (3) 

where f represents constant of a velocity proportional 
friction of the cart. According to the angular 
momentum conservation law, the rotary motion of the 
rod about its centre is described as: 

2

2 sin cosSI Vl Hl C
t t
θ θθ θ∂ ∂
= − −

∂ ∂
       (4) 

 
where  represents the inertia moment of the 
pendulum rod with respect to the centre of gravity 
and C denotes the friction constant of the 
pendulum[5]. 
Substituting equations (1) and (2) into equations (3) 
and (4) leads to the description of behaviour of the 
system by set of two nonlinear differential equations: 
[6] 

2
0 cos ( ) sinM x fx ml ml Fθ θ θ θ+ + − =&& &&& &  (5) 

sin cos 0I C mlg mlxθ θ θ θ+ − + =&& & &&          (6) 
 Following substitutions were used in  (5) and (6):        

2I Is ml= +  
  0M M m= +  
 
The model described by nonlinear equations (5) and 
(6) is created in the MATLAB/Simulink environment 
as a standalone block. The Simulink scheme is shown 
in Fig. 2. 
All constants and symbols are clearly defined in 
Table I. 
           

A. Linearized Model 
For the purpose of control design, nonlinear 
differential equations (5) and (6) describing behavior 
of inverted pendulum were linearized around some 
appropriate working point[6]. The state space model 
matrices A and B of the linearized model is directly 
written as 

22 23 24 2

42 43 44 4

0 1 0 0 0
0

,
0 0 0 1 0
0

a a a b
A B

a a a b

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦

  (7) 

Where 

2 2

22 23 24, ,If m l g Cmla a a
R R R

−
= = =  

0 0
42 43 44, ,M mlg CMmlfa a a

R R R
−−

= = =
 

2 2
2 4 0, ,I mlb b R m l M I

R R
−

= = = −
 

 
This continuous linear model is discretized with 
respect to sampling time in design of MPC controller. 
 

 Figure 2. Simulink scheme of non-linear model 
 

TABLE I. parameters of the system 
     Parameter       Symbol Value and Unit 
Cart weight M 4.0kg 
Pendulum 
weight m 0.36kg 

Total weight 4.36kg 
Pendulum 
length l 0.420m 

Moment of 
inertia I 0.08433kg m2 

Cart friction f 6.5Kg/s 
Pendulum 
friction C 0.00652kg m2/s 

 
III. MODEL PREDICTIVE CONTROL  
ALGORITHM 
 
Model Predictive Control usually contains the 
following three ideas. 
1. Explicit use of a model to predict the process 
output along a future time horizon. 
2.Calculation of a control sequence to optimize an 
objective function. 
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3.A receding horizon strategy, so that at each instant 
the horizon is moved towards the future, which 
involves the application of the first control signal of 
the sequence calculated at each step [8]. 
 
The MPC methodology is characterized by the 
strategy represented in Fig. 2. The inverted pendulum 
system is considered as single-input single-output 
(SISO) system. The input of the system is force on 
the cart (F) and output of the system is cart position 
(r). Control objective is to move the cart according to 
the predefined reference trajectory for unconstrained 
and constrained optimization. Here pendulum angle is 
taken as a constrained because it should be close to 
zero during whole control process. 

 

 
Figure 3. Control strategy of Model Predictive Control 

 
A. Model structure  

The state space model of the linearized system is 
described as; 

( 1) ( ) ( )m m m mx k A x k B u k+ = +       (8) 

   ( ) ( ) ( )m m my k C x k D u k= +  
However, due to the principle of receding horizon 
control, where a current information of the plant is 
required for prediction and control, we have 
implicitly assumed that the input ( )u k  cannot affect 
the output ( )y k  at the same time. Thus, Dm = 0 in 
the plant model. 
   ( ) ( )m my k C x k=                    (9) 
by augmenting the state variable  to include the 
output variable  we have the augmented state 
space model [9]. 

( 1) ( )0
( )

( 1) ( )1

T
mm mm m

m mm m

Bx k x kA
u k

C By k y kC A
Δ + ⎡ ⎤ Δ ⎡ ⎤⎡ ⎤ ⎡ ⎤

= + Δ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

      
(10) 

[ ] ( )
( ) 0 1

( )
m

m

x k
y k

y k
Δ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

   (11)  

 
where [ ]0 0 0 . . 0m = . 

B.  Prediction of state and output variables 
Assuming that at the sampling instant , > 0, the 
state variable vector  is available through 
measurement, the state provides the current 
plant information. Following the standard approach in 
MPC, the future control trajectory is denoted by: 

[ ( ), ( 1),..., ( 1)]T
i i i cU u k u k u k NΔ = Δ Δ + Δ + −     

     (12) 
The future state variables are denoted as: 

[ ( 1/ ), ( 2/ ),..., ( / )]T
i i i i i iX x k k x k k x k Np k= Δ + Δ + Δ +

     (13) 
Where  is the control horizon dictating no. of 
parameters used to capture the future control 
trajectory and  is the prediction horizon. The 
control horizonis always less than the prediction 
horizon. 
The predicted output variables are:  

[ ( 1/ ), ( 2 / ),..., ( / )]T
i i i i i iY y k k y k k y k Np k= + + +

      (14) 
The predicted output variable Y is related to future 
control trajectory and current state measurement 

 via the following equation: 
( )iY Fx k Uφ= + Δ     (15) 

Where  

2

3 2

1 2

0 0 . . 0
0 . . 0

. . 0
,. . . . . . .

. . . . . . .

. . .p p p p cN N N N N

CA CB
CA CAB CB
CA CA B CAB CB

F

CA CA B CA CA B

φ

− − −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦  

 
C. Optimization 

For a given set-point signal  at sample time , 
within a prediction horizon the objective of the 
predictive control system is to bring the predicted 
output as close as possible to the set-point signal, 
where we assume that the setpoint signal remains 
constant in the optimization window. 
Assuming that the data vector that contains the set-
point information is 

[ ]1 1 1 . . 1 ( )T
s iR r k=

 
Objective function J is defined as  

( ) ( )T T
s sJ R Y R Y U R U= − − + Δ Δ     (16) 

where the first term is error between the predicted 
output and the set-point signal while the second term 
is the consideration given to the size of Δ when the 
objective function J is made to be as small as 
possible.  is a diagonal matrix in the form that  

c cw N NR r I ×=  

 where  is used as a tuning parameter for the 
desired closed-loop performance. 
 
The necessary condition for minimizing J is 
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0J
U

∂
=

∂Δ
,  

From which the optimal solution of control signal is 
find as 

1( ) ( ( ))T T
s iU R R Fx kφ φ φ−Δ = + −  (17) 

The matrix 1( )T Rφ φ −+  is called Hessian matrix. 
 
IV. DISCRETE TIME MPC WITH 
CONSTRAINTS 
 
In this section solution to the constrained control 
problem is discussed. In the case of constraints in 
manipulated variable, we express:  
 

( ) ( )0 0 0 0 0
( 1) ( 1)0 0 0 0
( 2) ( 2)0 0 0

( 1)
. .. . . . . . .
. .. . . . . . .

( 1) ( 1)).

i i

i i

i i
i

i c i c

u k u kI I
u k u kI I I
u k u kI I I I

u k

u k N u k NI I I I I I

Δ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥+ Δ +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥+ Δ +

= − +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

+ − Δ + −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

                                                                               

     (18) 
 
Writing Eq. (18) in a compact matrix form, with  
and  corresponding to the appropriate matrices, then 
the constraints for the control movement are imposed 
as 

1 2 min( ( 1) )iC u k C u U− − + Δ ≤ −   (19) 

1 2 max( ( 1) )iC u k C u U− + Δ ≤   (20) 
Where and  are column vectors with  
elements of and  respectively. Similarly, the 
constraints on increment of control signal is defined 
as 
-     (21) 

                                                  (22) 
Where  and  are column vectors with  
elements of  and  respectively. The 
output constraints are defined as 

min max( ) ( )Y Fx ki U k Yφ≤ + Δ ≤                (23) 
The objective function that has to minimize 
is

( ( )) ( ( )) 2 ( ( ))

( )

T T T
s i s i s i

T T

J R Fx k R Fx k U R Fx k

U R U

φ

φ φ

= − − − Δ −

+Δ + Δ
      (24) 
Subject to inequality constraints 

1 1

2 2

3 3

M N
M U N
M N

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥Δ ≤⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

,    (25) 

Where 2
1 2 3

2

, ,
C I

M M M
C I

φ
φ

− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦
 

min 1 min
1 2

max 1 max

( 1)
,

( 1)
i

i

U C u k U
N N

U C u k U
− + − −Δ⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥− − −Δ⎣ ⎦ ⎣ ⎦
, 

min
3

max

( )
( )

i

i

Y Fx k
N

Y Fx k
− +⎡ ⎤

= ⎢ ⎥−⎣ ⎦  
 

A. Numerical Solutions Using Hildreth 
Quadratic Programming 

The objective function J and the constraints are 
expressed as 

0.5 T TJ U M U U g= Δ Δ + Δ    (26) 

Subject to c cA U BΔ ≤    (27) 
Where M is the positive definite symmetric matrix. 
The necessary conditions for this optimization 
problem (Kuhn–Tucker conditions) are 

0T
cM U g A λΔ + + =  

0c cA U BΔ − ≤  

( ) 0T
c cA U Bλ Δ − =  

0λ ≥      (28) 
where the vector λ contains the Lagrange multipliers. 
Let  denote the index set of active constraints. 
Then the necessary conditions become 

0
act

T
i ci

i S
M U g Aλ

∈

Δ + + =∑  

0ci ciA U BΔ − =                         

0ci ciA U BΔ − <       

0iλ ≥              

0iλ =             (29) 
 
Where  is the ith row of the  matrix. Suppose an 
active set is guessed and the corresponding equality 
constrained problem is solved. Then if the other 
constraints are satisfied and the Lagrange multipliers 
turn out to be nonnegative, that solution would be 
correct. 
 
A dual method can be used to identify the constraints 
that are not active. Not only can they be eliminated in 
the solution, but also they can offer additional 
insights into the constrained control problem. The 
dual problem to the original quadratic problem [10] is 
described as follows. Assuming feasibility, the 
problem is equivalent to 

0max min [0.5 ( )]T T T
U c cU M U U g A U Bλ λ≥ Δ Δ Δ +Δ + Δ −  

      (30) 
The minimization over U is unconstrained and is 
attained by;  

1( )T
cU M g A λ−Δ = − +    (31) 

Substituting (31) in (30), the dual problem becomes 
1

0max ( 0.5 0.5 )T T TH K g M gλ λ λ λ −
≥ − − −  (32) 
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Where 1 T
c cH A M A−=  and 1

c cK B A M g−= + . 
Equation (32) is equivalent to 

1
0min (0.5 0.5 )T T T

c cH K B M Bλ λ λ λ −
≥ + +  (33) 

 is adjusted to minimize objective function. If  
 is required set  
. In any case, the objective function is 

decreased. Then we consider the next component 
. 
1 1max(0, )m m

i iwλ + +=  where 
1

1 1

1 1

1 [ ]
i n n

m m m
i i i j j i j j

j j ii i

w K h h
h

λ λ
−

+ +

= = +

= − + +∑ ∑   

        (34) 
nn is the dimension of λ. 
The optimal solution to the constrained control 
problem (29) is given by the solution of the linear 
equations 

0

T
act

act actact

U gM Ac
BcAc λ

Δ −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦
  (35) 

1 1( )( )T
act act act act actAc M Ac Bc Ac M gλ − −= − +   

     (36) 
1( )T

act actU M g Ac λ−Δ = − +   (37) 
 
V. SIMULATION RESULTS 
 
This section shows the results obtained for 
unconstrained and constrained optimization problem 
for inverted pendulum system. The prediction horizon 
Np is 20 and control horizon Nc is 3. The control input 
is constrained via  10 10U− ≤ Δ ≤ . Hildreth 
quadratic programming is used to solve the 
optimization problem. Sampling time is 0.1s.  Fig.4 
shows that the cart position tracks the reference and 
pendulum angle remains in upright position for 
unconstrained optimization problem and Fig.5 shows 
that the objective function is minimized at every time 
instant.. Using Hildreth quadratic programming 
algorithm the constrained problem is solved and the 
results are shown in Fig.6 and Fig.7. 

 

 
Figure 4. Unconstrained Optimization(Np=20,Nc=3) 

 
Figure 5. Optimal Cost 

 

 
Figure 6.Constrained Optimization(Np=20,Nc=3) 

 

 
Figure 7. Optimal Cost 

 
VI. CONCLUSION  
 
In this paper a discrete time model predictive 
controller is designed for controlling of inverted 
pendulum system. We see that cart position tracks the 
predicted reference path for both the constrained and 
unconstrained problem. By applying Hildreth 
Algorithm, the constrained optimization problem is 
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solved. The control sequence obtained is optimal, the 
pendulum is in inverted position and the objective 
function is minized. Future works could extend this 
investigation by considering other control techniques 
(not restricted to MPC), as well as the use of different 
objective functions. 

 
REFERENCES  

 
[1] K. Lee and V. Converstone,Carroll ”Control algorithm for 

stabilization under-actuated robots” J. of Robotic Systems, 
15(12): 681-697, 1998. 

[2]  Nour, M. I. H., Ooi, J., Chan K. Y., 2007, “Fuzzy Logic 
Control vs. Conventional PID Control of an Inverted 
Pendulum Robot”, International Conference on Intelligent 
and Advanced Systems, ICIAS 2007, p. 209-214. 

[3] Jung, S., Cho, H., Hsia T. C., 2007, “Neural Network 
Control for Position Tracking of a Two-Axis Inverted 
Pendulum System: Experimental Studies”, IEEE 
Transactions on Neural Networks, v. 18, no. 4, p. 1042-
1048. 

[4]  J. Marholt and František Gazdoš,“Modelling, identification 
and simulation of the inverted pendulum PS600, 2010,pp14-
18. 

[5] Amira: PS600 Laboratory Experiment Inverted Pendulum. 
Duisburg : Amira GmbH, 2000, 351 pp. 

[6] P. Chalupa and V.  Bobál,”Modelling and predictive control 
of inverted pendulum”.In 22nd European Conf. Modelling 
and Simulation. Nicosia, Cyprus, 2008,pp. 531-537. 

[7]   A journal by Ahmed Nor Kasruddin Bin Nasir, University 
Technology Malaysia, “Modelling and controller design for 
an inverted pendulum system”, 2007. 

[8] K.S.Holkar and L.M.Waghmare,”An Overview of Model 
Predictive Control”, International Journal of Control and 
Automation,Vol. 3, No. 4, December, 2010. 

[9] L.Wang,”Model predictive control system design and 
implementation using MATLAB”, 2009, Springer-Verlag 
London Limited. 

[10] L. Wang and P.C. Young,” An improved structure for 
model predictive control using non-minimal state space 
realization” Journal of Process Control 16 (2006) 355–371. 

 

 

International Journal of Electrical and Electronics Engineering(IJEEE) ISSN(PRINT):2231–5284,Vol‐3, Issue‐3
191


	DISCRETE TIME MODEL PREDICTIVE CONTROL APPROACH FOR INVERTED PENDULUM SYSTEM WITH INPUT CONSTRAINTS
	Recommended Citation

	DISCRETE TIME MODEL PREDICTIVE CONTROL APPROACH FOR INVERTED PENDULUM SYSTEM WITH INPUT CONSTRAINTS

