
International Journal of Instrumentation Control and Automation International Journal of Instrumentation Control and Automation 

Volume 1 Issue 3 Article 8 

October 2011 

A VLSI Approach for Cache Compression in Microprocessor A VLSI Approach for Cache Compression in Microprocessor 

Sharada Guptha M N 
Dept. of E&C, SSIT, Tumkur, Karnataka, India, gupthanps@gmail.com 

H. S. Pradeep 
Dept. of E&C, SSIT, Tumkur, Karnataka, India, Pradep.hs@gmail.com 

M Z Kurian 
Dept. of E&C, SSIT, Tumkur, Karnataka, India, mzkurianvc@yahoo.com 

Follow this and additional works at: https://www.interscience.in/ijica 

 Part of the Aerospace Engineering Commons, and the Mechanical Engineering Commons 

Recommended Citation Recommended Citation 
M N, Sharada Guptha; Pradeep, H. S.; and Kurian, M Z (2011) "A VLSI Approach for Cache Compression in 
Microprocessor," International Journal of Instrumentation Control and Automation: Vol. 1 : Iss. 3 , Article 
8. 
DOI: 10.47893/IJICA.2011.1034 
Available at: https://www.interscience.in/ijica/vol1/iss3/8 

This Article is brought to you for free and open access by the Interscience Journals at Interscience Research 
Network. It has been accepted for inclusion in International Journal of Instrumentation Control and Automation by 
an authorized editor of Interscience Research Network. For more information, please contact 
sritampatnaik@gmail.com. 

https://www.interscience.in/ijica
https://www.interscience.in/ijica/vol1
https://www.interscience.in/ijica/vol1/iss3
https://www.interscience.in/ijica/vol1/iss3/8
https://www.interscience.in/ijica?utm_source=www.interscience.in%2Fijica%2Fvol1%2Fiss3%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/218?utm_source=www.interscience.in%2Fijica%2Fvol1%2Fiss3%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=www.interscience.in%2Fijica%2Fvol1%2Fiss3%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.interscience.in/ijica/vol1/iss3/8?utm_source=www.interscience.in%2Fijica%2Fvol1%2Fiss3%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:sritampatnaik@gmail.com


 

 

 
A VLSI Approach for Cache Compression in  

Microprocessor 

 
 

Sharada Guptha M N,   H. S. Pradeep & M Z Kurian 
Dept. of E&C, SSIT, Tumkur, Karnataka, India 

E-mail : gupthanps@gmail.com, Pradep.hs@gmail.com, mzkurianvc@yahoo.com 
 

 

Abstract - Speed is one of the important issues that generally customers consider for selecting any electronic component in the 
market. Speed of a microprocessor based system mainly depends on the speed of the microprocessor which in turn depends on the 
memory access time. Accessing on chip memory takes more time than accessing off-chip memory. Because of these, designers of 
memory system may find cache compression as an advantageous method to increase speed of a microprocessor based system, as it 
increases cache capacity and off-chip bandwidth.  The However, most past work, and all work on cache compression, has made 
unsubstantiated assumptions about the performance, power consumption, and area overheads of the proposed compression 
algorithms and hardware. It is not possible to determine whether compression at levels of the memory hierarchy closest to the 
processor is beneficial without understanding its costs. Proposed hardware compression algorithms fall into the dictionary-based 
category, which depend on building a dictionary and using its entries to encode repeated data values. Proposed algorithm has number 
of novel features like including combining pairs of compressed lines into one cache line and allowing parallel compression of 
multiple words while using a single dictionary and without degradation in compression ratio. 

Keywords - off-chip memory, memory latency, cache compression, memory hierarchy, parallel compression, compression ratio. 

 
I. INTRODUCTION  

 The widening gap between processor and memory 
speeds, results because of  tight constraints on the 
amount of on-chip cache memory and the high latency 
of off-chip memory, such as dynamic random access 
memory. More time is essential to access off-chip 
memory time required to access  generally takes an 
accessing on-chip cache. Hence to improve memory-
system efficiency cache hierarchies is been incorporated 
on chip, but it is constrained by die area and cost. Cache 
compression is one such technique; data in last-level on-
chip caches, e.g., L2 resulting in larger usable caches. In 
the past, researchers have reported that cache 
compression can improve the performance of 
uniprocessors by up to 17% for memory-intensive 
commercial workloads [1] and up to 225% for memory-
intensive scientific workloads [2].  However past work 
did not demonstrate whether the proposed compression 
and decompression hardware is appropriate for cache 
compression, considering the performance, area and 
power consumption requirements.   

 Cache compression has to overcome several 
constraints. First, decompression and compression must 
be extremely fast: a significant increase in cache hit 
latency will overwhelm the advantages of reduced cache 
miss rate. This requires an efficient on-chip 

decompression hardware implementation. Second, the 
hardware should occupy little area compared to the 
corresponding decrease in the physical size of the cache, 
and should not substantially increase the total chip 
power consumption. Third, the algorithm should 
losslessly compress small blocks, e.g., 64-byte cache 
lines, while maintaining a good compression ratio 
(throughout this paper we use the term compression 
ratio to denote the ratio of the compressed data size over 
the original data size). Conventional compression 
algorithm quality metrics, such as block compression 
ratio, are not appropriate for judging quality in this 
domain. Instead, one must consider the effective system-
wide compression ratio This paper will point out a 
number of other relevant quality metrics for cache 
compression algorithms, some of which are new. 
Finally, cache compression should not increase power 
consumption substantially.  

II.  RELATED WORK AND CONTRIBUTIONS 

 A number of researchers have assumed the use of 
general- purpose main memory compression hardware 
for cache compression. IBM’s MXT (Memory 
Expansion Technology) [6] is a hardware memory 
compression/decompression technique that improves the 
performance of servers via increasing the usable size of 

International Journal of Instrumentation, Control and Automation (IJICA) ISSN : 2231-1890 Volume-1, Issue-3
187



A VLSI Approach for Cache Compression in Microprocessor 

 

 

off-chip main memory. Data are compressed in main 
memory and decompressed when moved from main 
memory to the off-chip shared L3 cache. Memory 
management hardware dynamically allocates storage in 
small sectors to accommodate storing variable-size 
compressed data block without the need for garbage 
collection. IBM reports compression ratios (com-
Pressed  size divided by uncompressed size) ranging 
from 16% to 50%. 

 X-Match is a dictionary-based compression 
algorithm. It  matches 32-bit words using a content 
addressable memory that allows partial matching with 
dictionary entries and outputs variable-size encoded data 
that depends on the type of match. To improve coding 
efficiency, it also uses a move-to-front coding strategy 
and represents smaller indexes with fewer bits. 
Although appropriate for com- pressing main memory, 
such hardware usually has a very large block which is 
inappropriate for compressing cache lines. It is shown 
that for X-Match and two variants of Lempel-Ziv 
algorithm, i.e., LZ1 and LZ2, the compression ratio for 
memory data deteriorates as the  block size becomes 
smaller [7]. For example, when the block size decreases 
from 1 KB to 256 B, the compression ratio for LZ1 and 
X-Match increase by 11% and 3%. It can be inferred 
that the amount of increase in compression ratio could 
be even larger when the block size decreases from 256 
B to 64 B. In addition, such hardware has performance, 
area, or power consumption costs that contradict its use 
in cache compression.  

 Other work proposes special-purpose cache 
compression hardware and evaluates only the 
compression ratio, disregarding other important criteria 
such as area and power consumption costs. Frequent 
pattern compression (FPC) [8] compresses cache lines at 
the L2 level by storing common word patterns in a 
compressed format. Patterns are differentiated by a 3-bit 
prefix. Cache lines are compressed to predetermined 
sizes that never exceed their original size to reduce 
decompression overhead. Based on logical effort 
analysis [9], for a 64-byte cache line, compression can 
be completed in three cycles and decompression in five 
cycles, assuming 12 fan-out-four (FO4) gate delays per 
cycle. To the best of my knowledge, there is no register-
transfer-level hardware implementation or FPGA 
implementation of FPC power consumption, and area 
overheads are unknown.  

 However, without a cache compression algorithm 
and hardware implementation designed and evaluated 
for effective system-wide compression ratio, hardware 
overheads, and interaction with other portions of the 
cache compression system, one can not reliably 
determine whether the proposed architectural schemes 
are beneficial. 

 In this paper a lossless compression algorithm is 
been proposed and developed. The algorithm is  named 
C-Pack, for on-chip cache compression. The main 
contributions of this work are as follows. 

1)  C-Pack targets on-chip cache compression. It 
permits a good compression ratio even when used 
on small cache lines. The performance, area, and 
power consumption overheads are low enough for 
practical use.  

2)  When cache compression algorithm is  
implemented using FPGA, performance and power 
requirements can be easily analyzed.  

3)  C-pack makes a pair of compressed lines to fit into 
a single uncompressed cache line. 

 4)  The proposed  hardware can be easily adapted to 
other high-performance lossless compression 
applications. 

III.  CAHE COMPRESSION ARCHITECTURE 

 For this work, consider private on-chip L2 cache is  
considered, because in contrast to a shared L2 cache, the 
design styles of private L2 caches remain consistent 
when the number of processor cores increases.   

 Fig. 1 gives an overview of a system architecture 
where compression is used. Processor has private L1 
and L2 caches. L1 cache is subdivided into two parts to 
show separate code and data memory. L2 cache is 
unified in nature. Hence L2 cache is considered for this 
work. 

 The main point that can be considered here is that 
no architectural changes are needed to be done in 
processor to implement the  proposed techniques for a 
L2 cache.  

 

 

 

 

 

 

 

 

 

 

Fig. 1: System Architecture in which cache compression 
is used. 

L2 

International Journal of Instrumentation, Control and Automation (IJICA) ISSN : 2231-1890 Volume-1, Issue-3
188



A VLSI Approach for Cache Compression in Microprocessor 

 

 

IV. COMPRESSION ALGORITHM 

 The algorithm used for compression and 
decompression here is C-pack which has several 
advantages as mentioned above. C-pack algorithm   
requires hardware that can de/com-press a word in only 
a few CPU clock cycles. This rules out software 
implementations and has great influence on compression 
algorithm design. 

 Cache compression algorithm is lossless to maintain 
correct microprocessor operation. The complexity of 
managing the locations of cache lines after compression 
influences feasibility.  It achieves a good compression 
ratio when used to compress data commonly found in 
microprocessor low-level on-chip caches, e.g., L2 
caches. Its design was strongly influenced by prior work 
on pat- tern-based partial dictionary match compression 
[16]. However, this prior work was designed for 
software-based main memory compression and did not 
consider hardware implementation. 

 C-Pack achieves c ompression by two means: (1) it 
uses statically decided, compact encodings for 
frequently appearing data words and (2) it encodes using 
a dynamically updated dictionary allowing adaptation to 
other frequently appearing words. The dictionary 
supports partial word matching as well as full word 
matching. The patterns and coding schemes used by C-
Pack are summarized in Table I,. The ‘Pattern’ column 
describes frequently ap- pearing patterns,  

Where ‘z’ represents a zero byte, ‘m’ represents a byte 
matched against a dictionary entry, and ‘x’ represents an 
unmatched byte. In the ‘Output’ column, ‘B’ represents 
a byte and ‘b’ represents a bit. 

 The C-Pack compression and decompression 
algorithms are illustrated in Fig. 2. We use an input of 
two words per cycle as an example in Fig. 2. However, 
the algorithm can be easily extended to cases with one, 
or more than two, words per cycle. During one iteration, 
each word is first compared with patterns “zzzz” and 
“zzzx”. If there is a match, the compression output is 
produced by combining the corresponding code and 
unmatched bytes as indicated in Table I. Otherwise; the 
compressor compares the word with all dictionary 
entries and finds the one with the most matched bytes. 
The compression result is then obtained by combining 
code, dictionary entry index, and unmatched bytes, if 
any. Words that fail pattern matching are pushed into 
the dictionary. Fig. 3 shows the compression results for 
several different input words. In each output, the code 
and the dictionary index, if any, are enclosed in 
parentheses. Although we used a 4-word dictionary in 
Fig. 3 for illustration, the dictionary size is set to 64 B in 

our implementation. Note that the dictionary is updated 
after each word insertion, which is not shown in Fig. 3. 

 

Fig. 2 : Compression and decompression flow chart  

 During decompression, the decompressor first reads 
compressed words and extracts the codes for analyzing 
the patterns of each word, which are then compared 
against the codes defined in Table I. If the code indicates 
a pattern match, the original word is recovered by 
combining zeroes and unmatched bytes, if any. 
Otherwise, the decompression output is given by 
combining bytes from the input word with bytes from 
dictionary entries, if the code indicates a dictionary 
match. 

 The C-Pack algorithm is designed specifically for 
hardware implementation. It takes advantage of 
simultaneous comparison of an input word with multiple 
potential patterns and dictionary entries. This allows 
rapid execution with good compression ratio in a 
hardware implementation, but may not be suitable for a 
software implementation. Software implementations 
commonly serialize operations. For example, matching 
against multiple patterns can be prohibitively expensive 
for software implementations when the number of 
patterns or dictionary en-tries is large. C-Pack’s 
inherently  parallel design  parallel design allows an effi-
cient hardware implementation, in which pattern 
matching, dictionary matching, and processing multiple 
words are all done simultaneously.  

International Journal of Instrumentation, Control and Automation (IJICA) ISSN : 2231-1890 Volume-1, Issue-3
189



A VLSI Approach for Cache Compression in Microprocessor 

 

 

 

 

Fig. 3: Compression examples for different input words. 

 

 
Fig. 4 : Compresiion examples for different input wods. 

 

 

 

 

 

 
Table 1: Pattern Encoding for C-pack 

 In the proposed implementation of C-pack , two 
words are processed parallely per cycle. Achieving this, 
while still permitting an accurate dictionary match for 
second word, is challenging task here. If two similar 
words are considered that have not been encountered by 
the compression algorithm recently, assuming the 
dictionary that uses first in first out(FIFO) as its 
replacement policy.  

 The appropriate dictionary content when processing 
the second word depends on whether the first word 
matched a static pattern. If so, the first word will not 
appear in the dictionary. Otherwise, it will be in the 
dictionary, and its presence can be used to encode the 
second word. Therefore, the second word should be 
compared with the first word and all but the first 
dictionary entry in parallel. This improves compression 
ratio compared to the more naïve approach of not 
checking with the first word. Therefore, we can 
compress two words in parallel without compression 
ratio degradation.  

 The above shown algorithm steps is coded in 
verilog language as it is easier than any other HDL 
language and because of some of its salient features like 
it allows the descriptions of each module to done 
mathematically in terms its terminals and external 
parameters applied to the module.etc. The same has 
been  simulated using the able simulation tool modelsim 
6.2.The results in terms of  numbers and waveforms are 
analyzed to get accurate results. Then the code can be 
synthesized using Xilinx software. 

V.  C-PACK HARDWARE IMPLEMENTATION 

 The proposed hardware implementation of 
compressor and decompressor of C-pack targets mainly 
on on-chip cache compression.. Even the same hardware 
can be used in other data compression applications, such 
as memory compression and network data compression, 
with few or no modifications. 

 

 

International Journal of Instrumentation, Control and Automation (IJICA) ISSN : 2231-1890 Volume-1, Issue-3
190



A VLSI Approach for Cache Compression in Microprocessor 

 

 

VI.  CONCLUSION 

 By the implementation of the proposed algorithm, it 
is possible to compress and decompress the data into the 
cache in an efficient way without altering the processor 
performance. This method maintains good compression 
ratio and area overhead and thus decreases memory 
latency and speeds up the processor and by making the 
system to work with high speed and thus helpful for 
mankind. 

REFERENCES 

[1]   A. R. Alameldeen and D. A. Wood, “Adaptive 
cache compression for high performance 
processors,” in Proc. Int. Symp. Computer 
Architecture, pp. 212–223, Jun. 2004 

[2]   E. G. Hallnor and S. K. Reinhardt, “A 
compressed memory hierarchy using an  indirect 
index cache,” in Proc. Workshop Memory 
Performance Issues, pp. 9–15,  2004,  

[3]   A. R. Alameldeen and D. A.Wood, “Interactions 
between compression and  refetching in chip 
multiprocessors,” in Proc. Int. Symp. High-
Performance Computer Architecture,  pp. 228–
239, Feb. 2007 

[4]  A. Moffat, “Implementing the PPM data 
compression scheme,” IEEE Trans.  Commun. , 
vol. 38, no. 11, pp. 1917–1921, Nov. 1990. 

[5]   M. Burrows and D. Wheeler, “A block sorting 
lossless data compression algorithm,” Digital 
Equipment Corporation, Tech. Rep. 124, 1994. 

[6]   B. Tremaine et al., “IBM memory expansion 
technology,” IBM J. Res. Development, vol. 45, 
no. 2, pp. 271–285, Mar. 2001. 

[7]   J. L. Núñez and S. Jones, “Gbit/s lossless data 
compression hardware,” IEEE  Trans. Very Large 
Scale Integr. (VLSI) Syst., vol. 11, no. 3, pp. 
499–510,  Jun. 2003. 

[8]  A. Alameldeen and D. A. Wood, “Frequent 
pattern compression: A significance- based 
compression scheme for 12 caches,” Dept. Comp. 
Scie. , Univ. Wisconsin-  Madison, Tech. Rep. 
1500, Apr. 2004. 

[9]   I. Sutherland, R. F. Sproull, and D. Harris, 
Logical Effort: Designing Fast  CMOS Circuits, 
1st ed. San Diego, CA: Morgan Kaufmann, 1999. 

[10]  J.-S. Lee et al., “Design and evaluation of a 
selective compressed memory  system,” in Proc. 
Int. Conf. Computer Design, pp. 184–191, Oct. 
1999. 

 

 

 

International Journal of Instrumentation, Control and Automation (IJICA) ISSN : 2231-1890 Volume-1, Issue-3
191


	A VLSI Approach for Cache Compression in Microprocessor
	Recommended Citation

	A VLSI Approach for Cache Compression in Microprocessor

